
2016 Æ©¸µ ¾ÆÄ«µ¥¹Ì »ýÁ¸ ÄÚµù <ÆÄÀ̽ã>
¾È³çÇϼ¼¿ä. ¾ÆÆ®¼¾ÅÍ ³ªºñ ±³À°ÆÀ¿¡¼ À̹ø¿¡ '2016 Æ©¸µ ¾ÆÄ«Ä«µ¥¹Ì »ýÁ¸ ÄÚµù <ÆÄÀ̽ã>' ±³À° ÇÁ·Î±×·¥À» ÁøÇàÇÕ´Ï´Ù.
»ç¶÷°ú »ç¶÷, »ç¶÷°ú »ç¹°, »ç¹°°ú »ç¹° »çÀ̰¡ ¼ÒÅëÇÏ´Â µðÁöÅÐ ½Ã´ëÀÇ Á߽ɿ¡ ¼ÒÇÁÆ®¿þ¾î°¡ ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Á᫐ »çȸ¿¡¼´Â »ç¹°ÀÎÅͳÝ, ºòµ¥ÀÌÅÍ, Àΰø Áö´É µî ¹Ì·¡¸¦ ÁÖµµÇÏ´Â »ê¾÷µéÀÌ ´õ¿í °ÈµÇ¸ç, ¼ÒÇÁÆ®¿þ¾î¸¦ ¹è¿ìÁö ¾ÊÀ¸¸é ±Þº¯ÇÏ´Â µðÁöÅÐ °æÁ¦¿Í »çȸ¿¡¼ »ì¾Æ³²±â ¾î·Á¿î »óȲ¿¡ Á÷¸éÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù.
¾ÆÆ®¼¾ÅÍ ³ªºñ´Â µðÁöÅÐ ½Ã´ë¿¡ ²À ÇÊ¿äÇÑ ±³À°À¸·Î ÄÄÇ»ÅÍ ¾ð¾î ¹è¿ì±â¸¦ Á¦¾ÈÇÕ´Ï´Ù. 6¿ù 27ÀϺÎÅÍ 8¿ù 24ÀϱîÁö ¾à 2°³¿ù°£ ÁøÇàÇÏ´Â <»ýÁ¸ ÄÚµù-ÆÄÀ̽ã> ÇÁ·Î±×·¥À» ÅëÇØ ¿©·¯ºÐÀº ºñ±³Àû ½¬¿î ÇÁ·Î±×·¡¹Ö ¾ð¾îÀÎ ÆÄÀ̽ãÀ» Á¦´ë·Î ÀÍÈ÷°í ¸Ó½Å·¯´×À» Á÷Á¢ Ȱ¿ëÇÏ¿© ¿øÇÏ´Â ÇÁ·Î±×·¡¹Ö °³¹ß¿¡ Àû¿ëÇØº¼ ¼ö ÀÖ½À´Ï´Ù.
º» ÇÁ·Î±×·¥ Âü°¡¸¦ ÅëÇØ ¹Ì·¡ »çȸ¸¦ ÁÖµµÇÒ ¼ÒÇÁÆ®¿þ¾î ¿ª·®À» °È½ÃÄÑ ¿©·¯ºÐÀÇ °æÀï·ÂÀ» ³ô¿© º¸½Ã±â ¹Ù¶ø´Ï´Ù. °¨»çÇÕ´Ï´Ù.
ÀϽà : 2016.6.27(¿ù)ºÎÅÍ 8.24(¼ö)±îÁö, ¸ÅÁÖ ¿ù, ¼ö¿äÀÏ Àú³á 7½Ã - 9½Ã(ÁÖ 2ȸ, ȸ´ç 2½Ã°£, ÃÑ 16ȸ)
¼ö¾÷ ³¯Â¥ : 6.27, 6.29, 7.4, 7.6, 7.11, 7.13, 7.18, 7.20, 7.27, 8.1, 8.3, 8.8, 8.10, 8.17, 8.22, 8.24
Àå¼Ò : Åë¼·ÀÎÀç¾ç¼º¼Ò ŸÀÛ¸¶´ç(SK UX HCI LAB)
¸ðÁý ´ë»ó : ÆÄÀ̽㠾ð¾î¿¡ °ü½ÉÀÌ ÀÖÀ¸¸ç, °ÀÇ¿¡ ¿¼ºÀûÀ¸·Î Âü¿©Çϰí, º¹½À±îÁö ¿½ÉÈ÷ ÇÒ ¼ö ÀÖ´Â ´©±¸³ª
¸ðÁý Àοø : 15¸í(¼±Âø¼ø)
½Åû ±â°£ : 2016. 6. 10 - 6. 24
Âü°¡ ½Åû : http://goo.gl/forms/HXlyKRVLQyawIQpr1
Âü°¡ºñ : 1Àδç 60¸¸¿ø(2°³¿ù °úÁ¤) / °èÁ ¼Û±Ý, Ä«µå °áÁ¦ °¡´É
(ÀԱݰèÁ : ±¹¹ÎÀºÇà 344901-04-025290, ¿¹±ÝÁÖ : ¾ÆÆ®¼¾Åͳªºñ¹Ì¼ú°ü)
Áغñ¹° : °³ÀÎ ³ëÆ®ºÏ ÁöÂü
¹®ÀÇ : ±³À°ÆÀ, nabiedu@nabi.or.kr, ¢Ï 02-6263-0007
°»ç : ÀÌÁø¼® (ÇÏ´Ü ÀÌ·Â Âü°í)
Ä¿¸®Å§·³
[1ȸ] ¿À¸®¿£Å×À̼Ç
Ãֽа³¹ß Æ®·»µå »ìÆìº¸±â
°³¹ßȯ°æ ¼¼ÆÃ
Anaconda ÆÄÀ̽ã 3.5 ¼³Ä¡
¼Ò½ºÄÚµå ÆíÁý±â ¼³Ä¡ : Visual Studio Code
IPython ¼³Ä¡
Áú´ä
[2ȸ, 3ȸ, 4ȸ] ÆÄÀ̽㠱âÃʹ®¹ý
µ¥ÀÌÅÍ Å¸ÀÔ, º¯¼ö, ¿¬»êÀÚ, Á¦¾î±¸Á¶, ÇÔ¼ö, Ŭ·¡½º, ¸ðµâ, ÆÑŰÁö
basic structures (list, tuple, dict, set)
OrderedDict
Positional Arguments, Keyword Arguments
ÆÄÀ̽ãÀ» Á» ´õ ÆíÇÏ°Ô ¾²±â
IPython °ú Jupyter Notebook
[5ȸ, 6ȸ, 7ȸ] ÆÄÀ̽ãÀ» ÆÄÀ̽ã´ä°Ô ¾²±â
range, xrange
decorator (lru_cache, etc)
packing, unpacking, generator, iterable, callable objects
list comprehension, set comprehension
[8ȸ] ÆÄÀ̽㠶óÀ̺귯¸® Ȱ¿ë
requests : °£ÆíÇÑ HTTP ¿äû ó¸®
pillow : À̹ÌÁö ó¸®
wand : °íǰÁú À̹ÌÁö ó¸®
openpyxl : ¿¢¼¿ÆÄÀÏ ¿¬µ¿
[9ȸ, 10ȸ] ÆÄÀ̽ã Ȱ¿ë
½½·¢/¸Þ½ÅÀú º¿ ¸¸µé±â
[11ȸ, 12ȸ] Azure Machine Learning ¼Ò°³ ¹× ´Ù¾çÇÑ ¸Ó½Å·¯´× API ¸®ºä
Face APIs : http://www.projectoxford.ai/face
Speech APIs : http://www.projectoxford.ai/speech
Computer Vision APIs : http://www.projectoxford.ai/vision
Recommendations : http://datamarket.azure.com/dataset/amla/recommendations
Text Analytics : http://datamarket.azure.com/dataset/amla/text-analytics
Forecasting with Autoregressive Integrated Moving Average (ARIMA) : http://datamarket.azure.com/dataset/aml_labs/arima
[13ȸ] Azure Machine Learning API Ȱ¿ë
Azure Ãßõ API ¸¦ Ȱ¿ëÇÏ¿© Ãßõ ½Ã½ºÅÛ ¸¸µé±â (º¿°ú ¿¬µ¿)
[14ȸ, 15ȸ, 16ȸ] Azure Machine Learning À» Ȱ¿ëÇÏ¿©, Ãßõ API Á÷Á¢ ¸¸µé¾îº¸±â
* °»ç °ÀÇ °æ·Â
ASK DJANGO, "Àå°í Â÷±ÙÂ÷±Ù ½ÃÀÛÇϱ⡱ °ÀÇ 1±â/2±â/3±â/4±â ÁøÇà
ASK DJANGO, ¡°ÆÄÀ̽ã Â÷±ÙÂ÷±Ù ½ÃÀÛÇϱ⡱ °ÀÇ 1±â/2±â/3±â ÁøÇà
¼¿ï´ëÇб³ º¥Ã³°æ¿µÇÐ Àü°ø, º¥Ã³Ã¢¾÷ À¥ÇÁ·Î±×·¡¹Ö 2, 1Çб⠰ÀÇ, 2Çб⠿¹Á¤
Çѱ¹ ¸¶ÀÌÅ©·Î¼ÒÇÁÆ® ÁÖÃÖ, Çѱ¹ÄÄÇ»ÅÍÇÐȸ ÇÏ°è ¿öÅ©¼¥, ÆÄÀ̽ã/Àå°í °ÀÇ - 2016³â 7¿ù ¿¹Á¤ (16½Ã°£)
Çѱ¹ ¸¶ÀÌÅ©·Î¼ÒÇÁÆ® ÁÖÃÖ, ¸áÆÃÆÌ ¼¼¹Ì³ª ¡°ÆÄÀ̽ã, ³ÍIS¹ºµé¡± DJANGO ¼¼¼Ç ÁøÇà - 2016³â 6¿ù (7½Ã°£)
Çѱ¹ ¸¶ÀÌÅ©·Î¼ÒÇÁÆ® ÁÖÃÖ, ¸áÆÃÆÌ ¼¼¹Ì³ª ¡°ÀÀ´äÇ϶ó ÆÄÀ̽㡱 DJANGO ¼¼¼Ç ÁøÇà - 2016³â 3¿ù (2½Ã°£)
Çѱ¹ÀºÇà, »ç³» ÆÄÀ̽㠵µÀÔÀ» À§ÇÑ ÆÄÀ̽ã ÀÔ¹® °ÀÇ - 2015³â 04¿ù ~2015³â 05¿ù (6ÁÖ)
ÆÐ½ºÆ® Ä·ÆÛ½º, À¥¼ºñ½º °³¹ß CAMP, 2±â Á¶±³ - 2015³â 03¿ù ~2015³â 06¿ù (10ÁÖ)
ÆÐ½ºÆ® Ä·ÆÛ½º, À¥¼ºñ½º °³¹ß CAMP, 3±â °»ç - 2015³â 07¿ù ~ 2015³â 09¿ù (8ÁÖ)